Skip to main content

Seizure Susceptibility In Angelman Syndrome May Be Due To Brain Cell Activity Imbalance

English: Complete neuron cell diagram. Neurons...
English: Complete neuron cell diagram. Neurons (also known as neurones and nerve cells) are electrically excitable cells in the nervous system that process and transmit information. In vertebrate animals, neurons are the core components of the brain, spinal cord and peripheral nerves. (Photo credit: Wikipedia)
Chromosome 15
Chromosome 15 (Photo credit: Wikipedia)
New research by scientists at the University of North Carolina School of Medicine may have pinpointed an underlying cause of the seizures that affect 90 percent of people with Angelman syndrome (AS), a neurodevelopmental disorder.

Published online in the journal Neuron, researchers led by Benjamin D. Philpot, PhD, professor of cell and molecular physiology at UNC, describe how seizures in individuals with AS could be linked to an imbalance in the activity of specific types of brain cells.

"Our study indicates that a common abnormality that may apply to many neurodevelopmental disorders is an imbalance between neuronal excitation and inhibition," Philpot said. This imbalance has been observed in several genetic disorders including Fragile X and Rett syndromes, both of these, like AS, can be associated with autism.

Angelman syndrome occurs in one in 15,000 live births. The syndrome often is misdiagnosed as cerebral palsy or autism. Its characteristics, along with seizures, include cognitive delay, severe intellectual disability, lack of speech (minimal or no use of words), sleep disturbance, hand flapping and motor and balance disorders.

The most common genetic defect of the syndrome is the lack of expression of the maternally inherited allele of gene UBE3A on chromosome 15.

This loss of gene function in AS animal models has been linked to decreased release of an excitatory neurotransmitter which increases the activity of other neurons. But that seems at odds with the high seizure activity observed in AS patients. The new study may clarify this issue.

In his lab in UNC's Neuroscience Research Center, Philpot and graduate student Michael L. Wallace, the study's first author, explored the neurocircuitry of an Angelman syndrome mouse model. These mice show behavioral features similar to humans with AS, including seizures.

The researchers used electrophysiological methods to record excitatory and inhibitory activity from individual neurons. These involved highly precise recording electrodes, microscopic tips attached to individual neurons. "In this way you can record from precise neuron types and tell which neuron you're recording from and what its activity is," explained Philpot.

"You can stimulate it to drive other neurons and also record the activity on other neurons onto it."

The researchers found that neurotransmitters sent from inhibitory neurons and carrying chemical messages meant to stop excitatory neurons from increasing their activity were defective.

In addition, they found that AS model mice have a defect in their inhibitory neurons which decreases their ability to recover from high levels of activity. "One of the reasons why inhibition is so important is that it's needed to ensure that brain activity is regulated," Philpot said. "Inhibition plays an important role in timing of information transfer between neurons, and if the timing is messed up, as you might observe if you had a decrease in inhibition, then a lot of information is lost in that transfer."

"We found a disproportionately large decrease in inhibition to excitation," Wallace said. "We think that the circuit we investigated is in a hyperexcitable state and may be underlying some of the epileptic problems observed in the AS animal model. This improperly regulated brain activity might also underlie cognitive impairments in AS."

Philpot says one of their goals is to understand exactly how these changes in the connections between neurons underlie seizures in AS. "A very long term goal is to try to get better treatments for these individuals because their epilepsy is very hard to treat."
Enhanced by Zemanta
Post a Comment

Popular posts from this blog

What Is Continuous Spike-Wave in Slow Wave Sleep Syndrome? (A RARE EPILEPSY)

Image via Wikipedia Continuous spike-wave in slow wave sleep syndrome (CSWS) is a rare epilepsy syndrome in which children lose a wide range of developmental abilities, including language, motor skills, memory, and visuospatial skills. This syndrome occurs in school-aged children. Development prior to onset of CSWS may be normal, but children with CSWS often have some pre-existing learning difficulties. In many children there is no known cause of epilepsy, although some children are found to have abnormal brain formation or have a prior history of brain infection. We still do not understand how these structural changes result in the continuous EEG discharge.

Many, but not all, children with CSWS also have seizures. There can be many different seizure types, including absence, generalized tonic-clonic, and focal seizures. The seizures can be difficult to treat. Even in those who already had learning difficulties, there is a clear loss of skills across multiple deve…

Vitamin B12: The Most Important Nutrient You Need

Image via Wikipedia
Image by icethim via Flickr If you aren’t getting enough vitamin B12, it is indeed very important – and you may very well not be thinking about it. One reason you aren’t thinking about it is that we tend to fall in (and out!) of love with one nutrient at a time (such as vitamin C, beta carotene, lycopene and so on), and vitamin B12 isn’t the nutrient du jour. But the other reason you may not be thinking about it is … because you can’t. A deficiency of vitamin B12 can limit your ability to think clearly about anything! (More on that momentarily.)
Like all vitamins, B12 is an organic compound, made from carbons (as opposed to minerals, which are inorganic), and essential for our normal metabolic function and health. Also, like most vitamins, B12 plays a wide variety of roles in our metabolism. The short list of important effects B12 has on your health includes these: Vitamin B12 is essential for the manufacture of red blood cells; a deficiency leads to a cha…

Aloe Vera - diabetes, asthma, epilepsy, burns, sunburns, psoriasis and osteoarthritis

Introduction This fact sheet provides basic information about aloe vera—common names, uses, potential side effects, and resources for more information. Aloe vera's use can be traced back 6,000 years to early Egypt, where the plant was depicted on stone carvings. Known as the "plant of immortality," aloe was presented as a burial gift to deceased pharaohs.
What Aloe Vera Is Used ForTraditionally, aloe was used topically to heal wounds and for various skin conditions, and orally as a laxative.Today, in addition to traditional uses, people take aloe orally to treat a variety of conditions, including diabetes, asthma, epilepsy, and osteoarthritis. People use aloe topically for osteoarthritis, burns, sunburns, and psoriasis.Aloe vera gel can be found in hundreds of skin products, including lotions and sunblocks.The Food and Drug Administration (FDA) has approved aloe vera as a natural food flavoring. Aloe vera ...Lô Hội, Nha Đam..#1 (Photo credit: Vietnam Plants &…