Skip to main content

Epilepsy Cured in Mice Using Brain Cells

UC San Francisco Cell Therapy Raises Hope for Severe Human Forms

Deutsch: Gehirn lateral, Lobi

Epilepsy that does not respond to drugs can be halted in adult mice by transplanting a specific type of cell into the brain, UC San Francisco researchers have discovered, raising hope that a similar treatment might work in severe forms of human epilepsy.

UCSF scientists controlled seizures in epileptic mice with a one-time transplantation of medial ganglionic eminence (MGE) cells, which inhibit signaling in overactive nerve circuits, into the hippocampus, a brain region associated with seizures, as well as with learning and memory. Other researchers had previously used different cell types in rodent cell transplantation experiments and failed to stop seizures. 

Cell therapy has become an active focus of epilepsy research, in part because current medications, even when effective, only control symptoms and not underlying causes of the disease, according to Scott C. Baraban, PhD, who holds the William K. Bowes Jr. Endowed Chair in Neuroscience Research at UCSF and led the new study. In many types of epilepsy, he said, current drugs have no therapeutic value at all.

“Our results are an encouraging step toward using inhibitory neurons for cell transplantation in adults with severe forms of epilepsy,” Baraban said. “This procedure offers the possibility of controlling seizures and rescuing cognitive deficits in these patients.”

The findings, which are the first ever to report stopping seizures in mouse models of adult human epilepsy, will be published online May 5 in the journal Nature Neuroscience.

During epileptic seizures, extreme muscle contractions and, often, a loss of consciousness can cause seizure sufferers to lose control, fall and sometimes be seriously injured. The unseen malfunction behind these effects is the abnormal firing of many excitatory nerve cells in the brain at the same time. 

In the UCSF study, the transplanted inhibitory cells quenched this synchronous, nerve-signaling firestorm, eliminating seizures in half of the treated mice and dramatically reducing the number of spontaneous seizures in the rest. Robert Hunt, PhD, a postdoctoral fellow in the Baraban lab, guided many of the key experiments.
In another encouraging step, UCSF researchers reported May 2 that they found a way to reliably generate human MGE-like cells in the laboratory, and that, when transplanted into healthy mice,the cells similarly spun off functional inhibitory nerve cells. That research can be found online in the journal Cell Stem Cell.

In many forms of epilepsy, loss or malfunction of inhibitory nerve cells within the hippocampus plays a critical role. MGE cells are progenitor cells that form early within the embryo and are capable of generating mature inhibitory nerve cells called interneurons. In the Baraban-led UCSF study, the transplanted MGE cells from mouse embryos migrated and generated interneurons, in effect replacing the cells that fail in epilepsy. The new cells integrated into existing neural circuits in the mice, the researchers found. 

“These cells migrate widely and integrate into the adult brain as new inhibitory neurons,” Baraban said. “This is the first report in a mouse model of adult epilepsy in which mice that already were having seizures stopped having seizures after treatment.” 

The mouse model of disease that Baraban’s lab team worked with is meant to resemble a severe and typically drug-resistant form of human epilepsy called mesial temporal lobe epilepsy, in which seizures are thought to arise in the hippocampus. In contrast to transplants into the hippocampus, transplants into the amygdala, a brain region involved in memory and emotion, failed to halt seizure activity in this same mouse model, the researcher found. 

Temporal lobe epilepsy often develops in adolescence, in some cases long after a seizure episode triggered during early childhood by a high fever. A similar condition in mice can be induced with a chemical exposure, and in addition to seizures, this mouse model shares other pathological features with the human condition, such as loss of cells in the hippocampus, behavioral alterations and impaired problem solving.

In the Nature Neuroscience study, in addition to having fewer seizures, treated mice became less abnormally agitated, less hyperactive, and performed better in water-maze tests. 

Additional UCSF study authors include Arturo Alvarez-Buylla, PhD, UCSF professor of neurological surgery; John Rubenstein, MD, PhD, UCSF professor of psychiatry; and Kelly Girskis, staff research associate. The research was funded by the National Institutes of Health and by the California Institute of Regenerative Medicine.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.


Source Newsroom:University of California, San Francisco (UCSF) 
Enhanced by Zemanta
Post a Comment

Popular posts from this blog

What Is Continuous Spike-Wave in Slow Wave Sleep Syndrome? (A RARE EPILEPSY)

Image via Wikipedia Continuous spike-wave in slow wave sleep syndrome (CSWS) is a rare epilepsy syndrome in which children lose a wide range of developmental abilities, including language, motor skills, memory, and visuospatial skills. This syndrome occurs in school-aged children. Development prior to onset of CSWS may be normal, but children with CSWS often have some pre-existing learning difficulties. In many children there is no known cause of epilepsy, although some children are found to have abnormal brain formation or have a prior history of brain infection. We still do not understand how these structural changes result in the continuous EEG discharge.

Many, but not all, children with CSWS also have seizures. There can be many different seizure types, including absence, generalized tonic-clonic, and focal seizures. The seizures can be difficult to treat. Even in those who already had learning difficulties, there is a clear loss of skills across multiple deve…

Vitamin B12: The Most Important Nutrient You Need

Image via Wikipedia
Image by icethim via Flickr If you aren’t getting enough vitamin B12, it is indeed very important – and you may very well not be thinking about it. One reason you aren’t thinking about it is that we tend to fall in (and out!) of love with one nutrient at a time (such as vitamin C, beta carotene, lycopene and so on), and vitamin B12 isn’t the nutrient du jour. But the other reason you may not be thinking about it is … because you can’t. A deficiency of vitamin B12 can limit your ability to think clearly about anything! (More on that momentarily.)
Like all vitamins, B12 is an organic compound, made from carbons (as opposed to minerals, which are inorganic), and essential for our normal metabolic function and health. Also, like most vitamins, B12 plays a wide variety of roles in our metabolism. The short list of important effects B12 has on your health includes these: Vitamin B12 is essential for the manufacture of red blood cells; a deficiency leads to a cha…

Aloe Vera - diabetes, asthma, epilepsy, burns, sunburns, psoriasis and osteoarthritis

Introduction This fact sheet provides basic information about aloe vera—common names, uses, potential side effects, and resources for more information. Aloe vera's use can be traced back 6,000 years to early Egypt, where the plant was depicted on stone carvings. Known as the "plant of immortality," aloe was presented as a burial gift to deceased pharaohs.
What Aloe Vera Is Used ForTraditionally, aloe was used topically to heal wounds and for various skin conditions, and orally as a laxative.Today, in addition to traditional uses, people take aloe orally to treat a variety of conditions, including diabetes, asthma, epilepsy, and osteoarthritis. People use aloe topically for osteoarthritis, burns, sunburns, and psoriasis.Aloe vera gel can be found in hundreds of skin products, including lotions and sunblocks.The Food and Drug Administration (FDA) has approved aloe vera as a natural food flavoring. Aloe vera ...Lô Hội, Nha Đam..#1 (Photo credit: Vietnam Plants &…